
Design patterns were originally grouped into the categories: creational patterns, structural patterns, and behavioral

patterns, and described using the concepts of delegation, aggregation, and consultation. For further background on

object-oriented design, see coupling and cohesion, inheritance, interface, and polymorphism. Another classification has

also introduced the notion of architectural design pattern that may be applied at the architecture level of the software such

as the Model–View–Controller pattern.

Name Description
In

Design
Patterns

In Code
Complete[13] Other

Abstract
factory

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes. Yes Yes N/A

Builder
Separate the construction of a complex object from its
representation, allowing the same construction process to
create various representations.

Yes No N/A

Dependency
Injection

A class accepts the objects it requires from an injector
instead of creating the objects directly. No No N/A

Factory
method

Define an interface for creating a single object, but let
subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses.

Yes Yes N/A

Lazy
initialization

Tactic of delaying the creation of an object, the calculation of
a value, or some other expensive process until the first time it
is needed. This pattern appears in the GoF catalog as "virtual
proxy", an implementation strategy for the Proxy pattern.

No No PoEAA[14]

Multiton Ensure a class has only named instances, and provide a
global point of access to them. No No N/A

Object pool
Avoid expensive acquisition and release of resources by
recycling objects that are no longer in use. Can be
considered a generalisation of connection pool and thread
pool patterns.

No No N/A

Prototype
Specify the kinds of objects to create using a prototypical
instance, and create new objects from the 'skeleton' of an
existing object, thus boosting performance and keeping
memory footprints to a minimum.

Yes No N/A

Resource
acquisition
is
initialization
(RAII)

Ensure that resources are properly released by tying them to
the lifespan of suitable objects. No No N/A

Singleton Ensure a class has only one instance, and provide a global
point of access to it. Yes Yes N/A

Creational patterns

Structural patterns

https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern
https://en.wikipedia.org/wiki/Delegation_(programming)
https://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)
https://en.wikipedia.org/wiki/Coupling_(computer_science)
https://en.wikipedia.org/wiki/Cohesion_(computer_science)
https://en.wikipedia.org/wiki/Inheritance_(computer_science)
https://en.wikipedia.org/wiki/Interface_(object-oriented_programming)
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Code_Complete
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Builder_pattern
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Factory_method_pattern
https://en.wikipedia.org/wiki/Lazy_initialization
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Multiton_pattern
https://en.wikipedia.org/wiki/Object_pool_pattern
https://en.wikipedia.org/wiki/Connection_pool
https://en.wikipedia.org/wiki/Thread_pool
https://en.wikipedia.org/wiki/Prototype_pattern
https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Creational_pattern
https://en.wikipedia.org/wiki/Structural_pattern


Name Description
In

Design
Patterns

In Code
Complete[13] Other

Adapter,
Wrapper,
or
Translator

Convert the interface of a class into another
interface clients expect. An adapter lets
classes work together that could not otherwise
because of incompatible interfaces. The
enterprise integration pattern equivalent is the
translator.

Yes Yes N/A

Bridge
Decouple an abstraction from its
implementation allowing the two to vary
independently.

Yes Yes N/A

Composite
Compose objects into tree structures to
represent part-whole hierarchies. Composite
lets clients treat individual objects and
compositions of objects uniformly.

Yes Yes N/A

Decorator
Attach additional responsibilities to an object
dynamically keeping the same interface.
Decorators provide a flexible alternative to
subclassing for extending functionality.

Yes Yes N/A

Extension
object

Adding functionality to a hierarchy without
changing the hierarchy. No No

Agile Software
Development, Principles,

Patterns, and Practices[15]

Facade
Provide a unified interface to a set of
interfaces in a subsystem. Facade defines a
higher-level interface that makes the
subsystem easier to use.

Yes Yes N/A

Flyweight Use sharing to support large numbers of
similar objects efficiently. Yes No N/A

Front
controller

The pattern relates to the design of Web
applications. It provides a centralized entry
point for handling requests.

No No
J2EE Patterns[16]

PoEAA[17]

Marker Empty interface to associate metadata with a
class. No No Effective Java[18]

Module
Group several related elements, such as
classes, singletons, methods, globally used,
into a single conceptual entity.

No No N/A

Proxy Provide a surrogate or placeholder for another
object to control access to it. Yes No N/A

Twin [19]
Twin allows modeling of multiple inheritance in
programming languages that do not support
this feature.

No No N/A

Behavioral patterns

https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Code_Complete
https://en.wikipedia.org/wiki/Adapter_pattern
https://en.wikipedia.org/wiki/Bridge_pattern
https://en.wikipedia.org/wiki/Composite_pattern
https://en.wikipedia.org/wiki/Decorator_pattern
https://en.wikipedia.org/wiki/Facade_pattern
https://en.wikipedia.org/wiki/Flyweight_pattern
https://en.wikipedia.org/wiki/Front_controller
https://en.wikipedia.org/wiki/Marker_interface_pattern
https://en.wikipedia.org/wiki/Joshua_Bloch
https://en.wikipedia.org/wiki/Module_pattern
https://en.wikipedia.org/wiki/Proxy_pattern
https://en.wikipedia.org/wiki/Twin_pattern
https://en.wikipedia.org/wiki/Behavioral_pattern


Name Description
In

Design
Patterns

In Code
Complete[13] Other

Blackboard Artificial intelligence pattern for combining disparate sources
of data (see blackboard system) No No N/A

Chain of
responsibility

Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the request.
Chain the receiving objects and pass the request along the
chain until an object handles it.

Yes No N/A

Command
Encapsulate a request as an object, thereby allowing for the
parameterization of clients with different requests, and the
queuing or logging of requests. It also allows for the support
of undoable operations.

Yes No N/A

Interpreter
Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language.

Yes No N/A

Iterator
Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation.

Yes Yes N/A

Mediator
Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it allows
their interaction to vary independently.

Yes No N/A

Memento
Without violating encapsulation, capture and externalize an
object's internal state allowing the object to be restored to
this state later.

Yes No N/A

Null object Avoid null references by providing a default object. No No N/A

Observer or
Publish/subscribe

Define a one-to-many dependency between objects where a
state change in one object results in all its dependents being
notified and updated automatically.

Yes Yes N/A

Servant

Define common functionality for a group of classes. The
servant pattern is also frequently called helper class or utility
class implementation for a given set of classes. The helper
classes generally have no objects hence they have all static
methods that act upon different kinds of class objects.

No No N/A

Specification Recombinable business logic in a Boolean fashion. No No N/A

State Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class. Yes No N/A

Strategy
Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

Yes Yes N/A

Template method
Define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm's structure.

Yes Yes N/A

Visitor
Represent an operation to be performed on the elements of
an object structure. Visitor lets a new operation be defined
without changing the classes of the elements on which it
operates.

Yes No N/A

Concurrency patterns

https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Code_Complete
https://en.wikipedia.org/wiki/Blackboard_(design_pattern)
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Blackboard_system
https://en.wikipedia.org/wiki/Chain_of_responsibility_pattern
https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Iterator_pattern
https://en.wikipedia.org/wiki/Aggregate_pattern
https://en.wikipedia.org/wiki/Mediator_pattern
https://en.wikipedia.org/wiki/Loose_coupling
https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Null_Object_pattern
https://en.wikipedia.org/wiki/Observer_pattern
https://en.wikipedia.org/wiki/Publish/subscribe
https://en.wikipedia.org/wiki/Design_pattern_Servant
https://en.wikipedia.org/wiki/Specification_pattern
https://en.wikipedia.org/wiki/Business_logic
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/Strategy_pattern
https://en.wikipedia.org/wiki/Template_method_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Concurrency_pattern


Name Description In
POSA2[20] Other

Active Object
Decouples method execution from method invocation that reside in their
own thread of control. The goal is to introduce concurrency, by using
asynchronous method invocation and a scheduler for handling requests.

Yes N/A

Balking Only execute an action on an object when the object is in a particular
state. No N/A

Binding
properties

Combining multiple observers to force properties in different objects to be
synchronized or coordinated in some way.[21] No N/A

Compute
kernel

The same calculation many times in parallel, differing by integer
parameters used with non-branching pointer math into shared arrays, such
as GPU-optimized Matrix multiplication or Convolutional neural network.

No N/A

Double-
checked
locking

Reduce the overhead of acquiring a lock by first testing the locking
criterion (the 'lock hint') in an unsafe manner; only if that succeeds does
the actual locking logic proceed.

Can be unsafe when implemented in some language/hardware
combinations. It can therefore sometimes be considered an anti-pattern.

Yes N/A

Event-based
asynchronous

Addresses problems with the asynchronous pattern that occur in
multithreaded programs.[22] No N/A

Guarded
suspension

Manages operations that require both a lock to be acquired and a
precondition to be satisfied before the operation can be executed. No N/A

Join
Join-pattern provides a way to write concurrent, parallel and distributed
programs by message passing. Compared to the use of threads and locks,
this is a high-level programming model.

No N/A

Lock One thread puts a "lock" on a resource, preventing other threads from
accessing or modifying it.[23] No PoEAA[14]

Messaging
design
pattern
(MDP)

Allows the interchange of information (i.e. messages) between
components and applications. No N/A

Monitor
object

An object whose methods are subject to mutual exclusion, thus preventing
multiple objects from erroneously trying to use it at the same time. Yes N/A

Reactor A reactor object provides an asynchronous interface to resources that
must be handled synchronously. Yes N/A

Read-write
lock

Allows concurrent read access to an object, but requires exclusive access
for write operations. No N/A

Scheduler Explicitly control when threads may execute single-threaded code. No N/A

Thread pool
A number of threads are created to perform a number of tasks, which are
usually organized in a queue. Typically, there are many more tasks than
threads. Can be considered a special case of the object pool pattern.

No N/A

Thread-
specific
storage

Static or "global" memory local to a thread. Yes N/A

The documentation for a design pattern describes the context in which the pattern is used, the forces within the context

that the pattern seeks to resolve, and the suggested solution.[24] There is no single, standard format for documenting

design patterns. Rather, a variety of different formats have been used by different pattern authors. However, according to

Martin Fowler, certain pattern forms have become more well-known than others, and consequently become common

Documentation

https://en.wikipedia.org/w/index.php?title=Pattern-Oriented_Software_Architecture&action=edit&redlink=1
https://en.wikipedia.org/wiki/Active_object
https://en.wikipedia.org/wiki/Asynchronous_method_invocation
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Balking_pattern
https://en.wikipedia.org/wiki/Binding_properties_pattern
https://en.wikipedia.org/wiki/Compute_kernel
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/Matrix_multiplication
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Double_checked_locking_pattern
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Event-Based_Asynchronous_Pattern
https://en.wikipedia.org/wiki/Guarded_suspension
https://en.wikipedia.org/wiki/Join-pattern
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Messaging_pattern
https://en.wikipedia.org/wiki/Monitor_(synchronization)
https://en.wikipedia.org/wiki/Mutual_exclusion
https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Read/write_lock_pattern
https://en.wikipedia.org/wiki/Scheduler_pattern
https://en.wikipedia.org/wiki/Thread_pool_pattern
https://en.wikipedia.org/wiki/Object_pool
https://en.wikipedia.org/wiki/Thread-Specific_Storage
https://en.wikipedia.org/wiki/Martin_Fowler_(software_engineer)


starting points for new pattern-writing efforts.[25] One example of a commonly used documentation format is the one used

by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (collectively known as the "Gang of Four", or GoF for

short) in their book Design Patterns. It contains the following sections:

Pattern Name and Classification: A descriptive and unique name that helps in identifying and referring to the
pattern.
Intent: A description of the goal behind the pattern and the reason for using it.
Also Known As: Other names for the pattern.
Motivation (Forces): A scenario consisting of a problem and a context in which this pattern can be used.
Applicability: Situations in which this pattern is usable; the context for the pattern.
Structure: A graphical representation of the pattern. Class diagrams and Interaction diagrams may be used for this
purpose.
Participants: A listing of the classes and objects used in the pattern and their roles in the design.
Collaboration: A description of how classes and objects used in the pattern interact with each other.
Consequences: A description of the results, side effects, and trade offs caused by using the pattern.
Implementation: A description of an implementation of the pattern; the solution part of the pattern.
Sample Code: An illustration of how the pattern can be used in a programming language.
Known Uses: Examples of real usages of the pattern.
Related Patterns: Other patterns that have some relationship with the pattern; discussion of the differences between
the pattern and similar patterns.

It has been observed that design patterns may just be a sign that some features are missing in a given programming

language (Java or C++ for instance). Peter Norvig demonstrates that 16 out of the 23 patterns in the Design Patterns book

(which is primarily focused on C++) are simplified or eliminated (via direct language support) in Lisp or Dylan.[26]

Related observations were made by Hannemann and Kiczales who implemented several of the 23 design patterns using an

aspect-oriented programming language (AspectJ) and showed that code-level dependencies were removed from the

implementations of 17 of the 23 design patterns and that aspect-oriented programming could simplify the

implementations of design patterns.[27] See also Paul Graham's essay "Revenge of the Nerds".[28]

Inappropriate use of patterns may unnecessarily increase complexity.[29]

Abstraction principle
Algorithmic skeleton
Anti-pattern
Architectural pattern
Debugging patterns
Design pattern
Distributed design patterns
Double-chance function
Enterprise Architecture framework
GRASP (object-oriented design)
Helper class
Interaction design pattern
List of software development philosophies
List of software engineering topics
Pattern language
Pattern theory
Pedagogical patterns
Portland Pattern Repository
Refactoring
Software development methodology
Material Design

Criticism

See also

https://en.wikipedia.org/wiki/Erich_Gamma
https://en.wikipedia.org/wiki/Richard_Helm
https://en.wikipedia.org/wiki/Ralph_Johnson_(computer_scientist)
https://en.wikipedia.org/wiki/John_Vlissides
https://en.wikipedia.org/wiki/Design_Patterns_(book)
https://en.wikipedia.org/wiki/Unified_Modeling_Language#UML_Class_Diagram
https://en.wikipedia.org/wiki/Interaction_diagram
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Peter_Norvig
https://en.wikipedia.org/wiki/Lisp_(programming_language)
https://en.wikipedia.org/wiki/Dylan_(programming_language)
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Paul_Graham_(computer_programmer)
https://en.wikipedia.org/wiki/Abstraction_principle_(programming)
https://en.wikipedia.org/wiki/Algorithmic_skeleton
https://en.wikipedia.org/wiki/Anti-pattern
https://en.wikipedia.org/wiki/Architectural_pattern_(computer_science)
https://en.wikipedia.org/wiki/Debugging_patterns
https://en.wikipedia.org/wiki/Design_pattern
https://en.wikipedia.org/wiki/Distributed_design_patterns
https://en.wikipedia.org/wiki/Double-chance_function
https://en.wikipedia.org/wiki/Enterprise_Architecture_framework
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
https://en.wikipedia.org/wiki/Helper_class
https://en.wikipedia.org/wiki/Interaction_design_pattern
https://en.wikipedia.org/wiki/List_of_software_development_philosophies
https://en.wikipedia.org/wiki/List_of_software_engineering_topics
https://en.wikipedia.org/wiki/Pattern_language
https://en.wikipedia.org/wiki/Pattern_theory
https://en.wikipedia.org/wiki/Pedagogical_patterns
https://en.wikipedia.org/wiki/Portland_Pattern_Repository
https://en.wikipedia.org/wiki/Refactoring
https://en.wikipedia.org/wiki/Software_development_methodology
https://en.wikipedia.org/wiki/Material_Design

